

- NI ER I OF ALA KA FAIRBANK

fraction. If applied in elemental form, sulfur must be converted in the soil to sulfate, the form of sulfur that can be used by plants. For this reason, sulfur fertilizers should be scrutinized for their relative plant availability. Another manufactured sulfur fertilizer is ammonium sulfate. Sulfur in ammonium sulfate is readily available to plants; therefore, where immediate sulfur response is required, a sulfate source should be selected. In a soil sulfur building program or where long term sulfur availability is required (perennial crops), a combination of elemental sulfur and sulfate is desirable. Care should be used when applying elemental sulfur as this material lowers soil pH during the converting process.

Calcium, and magnesium if required, is normally applied in liming materials discussed in the next section. Gypsum (calcium sulfate) and calcium nitrate are sources of calcium that do not signifcantly raise the pH of the surrounding soil.

The micronutrients required by plants include zinc, manganese, copper, iron, boron, nickel and molybdenum. The term micronutrient accurately describes these nutrient elements because they are required in very small amounts for plant growth, although they are just as important as macronutrients. For this reason, micronutrients are often applied with seeds or in foliar sprays. Table 2 lists various inorganic micronutrient sources and their solubility in water.

Metallic micronutrients (manganese, copper, iron and zinc) are also commercially available in chelated forms. Chelates are designed to hold the micronutrient atoms in solution for increased plant availability. These forms are important agriculturally since micronutrients are often plant unavailable because of soil physical and chemical limitations or are relatively water insoluble pH. Oyster shells are pure calcium carbonate which, when fnely ground, increase soil pH.

Oxides, liming materials commonly known as burned lime, quicklime and unslaked lime, are made by baking or roasting crushed calcitic or dolomitic lime in an oven or furnace, which drives off carbon dioxide and leaves a pure oxide. These oxides are the most effcient liming materials on a pound-for-pound basis and react rCPM.4 (138 Gw2412 625 BD BT (002.0w24108.9)s.4 68.934 (bl w2430 4.960 c 15 (s.5 e)968 5 64.92e p/8 h H.9.)EEM Lime application rates are typically much higher than fertilizer application rates. Soils should be limed to a pH of 6.0 to 6.5 for the best crop production. Observing proper lime application rates will limit the chance of overliming, which, in addition to being expensive, can drastically

Fertilizer Material	Chemical Formula	Nutrient Compo			positic	osition (%)		
		Primary		Secondary				
		Ν	P2O5*	K ₂ O	S	Ca	Mg	
Ammonium nitrate	NH4NO3	34						

Table 1. Primary and secondary fertilizer nutrient source composition.

Fertilizer Material	Chemical Formula	Element %	Water Solubility g/100g H ₂ O	Temperature °F
Boron		/0	g/100g H20	F
Granular borax	Na2B4O7•10H2O	11.3	2.5	33
Sodium tetraborate, anhydrous	Na2B4O7	21.5	1.3	32
Solubor	Na ₂ B ₈ O ₁₃ •4H ₂ O	20.5	22	86
Ammonium pentaborate	NH4B5O8•4H2O	19.9	7	64
Copper				0.1
Copper sulfate	CuSO ₄ •5H ₂ O	25.0	24	32
Cuprous oxide	Cu ₂ O	88.8	*	
Cupric oxide	CuO	79.8	*	
Cuprous chloride	Cu ₂ Cl ₂	64.2	1.5	77
Cupric chloride	CuCl ₂	47.2	71	32
Iron				
Ferrous sulfate	FeSO ₄ •7H ₂ O	20.1	33	32
Ferric sulfate	Fe2(SO4)3•9H2O	19.9	440	68
Iron oxalate	Fe ₂ (C ₂ O ₄) ₃	30.0	very soluble	
Ferrous ammonium sulfate	Fe(NH4)2(SO4)2•6H2O	14.2	18	32
Ferric chloride	FeCl₃	34.4	74	32
Manganese				
Manganous sulfate	MnSO ₄ •4H ₂ O	24.6	105	32
Manganous carbonate	MnCO ₃	47.8	0.0065	77
Manganese oxide	Mn ₃ O ₄	72.0	*	
Manganous chloride	MnCl ₂	43.7	63	32
Manganous oxide	MnO	77.4		
Molybdenum				
Sodium molybdate	Na ₂ MoO ₄ •H ₂ O	39.7	56	32
Ammonium molybdate	(NH4)M07O24•4H2O	54.3	44	77
Molybdic oxide	MoO ₃	66.0	0.11	64
Zinc				
Zinc sulfate	ZnSO4•H2O	36.4	89	212
Zinc oxide	ZnO	80.3	*	
Zinc carbonate	ZnCO₃	52.1	0.001	60
Zinc chloride	ZnCl ₂	48.0	432	77
Zinc oxysulfate	ZnO•ZnSO4	453		

Table 2. Micronutrient sources and water solubility.

Liming Material	Chemical Composition	CCE	
Calcitic limestone	CaCO ₃	98–100	
Dolomitic limestone	CaMg(CO ₃) ₂	100–109	
Hydroxides	Ca(OH)2 or Mg(OH)2	120–136	
Oxides	CaO or MgO	150–179	
Marl	CaCO ₃ •X*	60-90	
Slags	CaSiO ₃ •X*	50-90	
Sludges	CaCO ₃ •X*	30-80	
Wood ashes			

Table 3. Calcium Carbonate Equivalence (CCE) values of various liming materials.